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Figure 1: Components of CRISPR biological system with nuclease 9 (CRISPR-Cas9). The CRISPR-Cas9 technique
includes several essential components that enable precise genome editing. In the first step, the Cas9 protein enters the
nucleus as a molecular scissors and separates the DNA strands at specific locations. In the second step, the guide RNA

(gRNA) acts as a molecular guide and provides Cas9 with the sequence information necessary to target and bind to
the desired DNA site (target).
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Figure 2: The flow diagram shows the methods of collecting studies related to the use of CRISPR-Cas technology in
.aquatic animals (Sources have been searched until May 2024)
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Figure 5: Summary of recent applications to increase disease resistance in commercial fish in aquaculture using genes
related to antimicrobial peptides by genome editing technique with CRISPR-Cas9 system (Wang and Cheng, 2024).
(a): Genes associated with different antimicrobial peptides (AMPs) and some immune-related parameters and (b):
Different pathogens and immune-related parameters. For example, genome editing of grass carp and channel catfish
has been detected in the synthesis of antimicrobial peptides of lactoferrin and peptides extracted from lysozyme by
evaluating lysozyme activity (LYA). IRGE, the expression of immune-related genes; TGE, the expression of
exogenous AMGs; CSR, cumulative survival rate; CFU, colony-forming unit of bacteria.
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Abstract

The progress of the aquaculture industry is facing many challenges, including the spread of
infectious diseases and antibiotic-resistant pathogens, reduced survival, reduced fertility, slow
growth, escape of farmed fish to natural ecosystems, and environmental pollution. Today, the
use of CRISPR-Cas technigue is considered as a potential solution to solve these challenges
through genome editing. In the CRISPR system, the nuclease 9 or Cas9 enzyme is a powerful
and efficient tool for molecular editing of DNA to reveal desired traits in the host. In this
context, several studies have been conducted on different aquatic species to investigate
desirable traits related to aquaculture, including suppressing the myostatin gene (increasing
somatic growth of the body), biosynthesis of fatty acids, stimulation of body pigmentation,
and production of fish with less intermuscular bones. In terms of reproduction traits, this
technology has been used for the genetic engineering of sex cells and sex reversal. In the field
of aquatic health, this genome-based breeding system has successfully produced fish resistant
to infectious diseases, especially viral diseases, on a laboratory scale. Also, editing genes
related to antimicrobial peptides by CRISPR-Cas9 can improve the innate immune system
and increases the resistance of fish against infectious diseases. In general, using the CRISPR-
Cas system is an effective approach to manipulate target genes and improve economic traits in
different aquatic species in line with genetic modification programs. This review study
provides a comprehensive view of CRISPR-Cas technology and its potential in genome
editing to target genes associated with economically valuable traits in fish to overcome some
limitations and challenges of promoting sustainable aquaculture.
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